»ULTRASURFACE« ULTRA DYNAMIC OPTICAL SYSTEMS FOR HIGH THROUGHPUT LASER SURFACE PROCESSING

Ultra SURFACE

European Commissior Horizon 2020 European Union funding for Research & Innovation

AGENDA

- **1** Motivation & goal of the ultraSURFACE project
- **2** Project relevant technologies
- **3** Concept & approach
- 4 First results
- 5 General information about the beneficiary & role in the project

AGENDA

- 1 Motivation & goal of the ultraSURFACE project
- **2** Project relevant technologies
- **3** Concept & approach
- 4 First results
- 5 General information about the beneficiary & role in the project

Motivation

- Surface processing techniques are widely used in industry
- Laser based processes...
 - ... offer high flexibility, precision and quality
 - ... offer new possibilities for creating complex surfaces
- The throughput of these processes is often not sufficient for an economic, industrial application
- In the same time: Laser sources getting more and more affordable

Goal

Overall goal:

Increase the throughput of laser based surface treatment processes by a factor of 10

Project title:

»Ultra Dynamic Optical Systems for High Throughput Laser Surface Processing«

AGENDA

- 1 Motivation & goal of the ultraSURFACE project
- **2** Project relevant technologies
- 3 Concept & approach
- 4 First results
- **5** General information about the beneficiary & role in the project

Laser processes Laser structuring (LS)

- Achieve small structures in micrometre scale
- With each pulse a tiny amount of material is removed by ablation
- Processing of 3D parts is achieved by sequential processing of tiles
- The low throughput is still limiting this technique to the processing of moulds rather than the processing of the work piece itself / individual parts

Laser processes Laser polishing (LP)

- Based on remelting a thin surface layer and smoothing the surface due to the surface tension
- Initial roughness of Ra = 1 10 µm can be reduced down to Ra = 0.05 – 0.5 µm
- Process has been adapted to 3D parts for a circular shaped beam profile
- In-house developed 3D CAM-NC process chain allows the processing of complex 3D parts using simultaneous processing
- First industrial applications already showed the potential of this new technology while the throughput is still one of the main limitations

Laser processes Laser thin-film processing (LT)

- Tool for improving the performance of technical components e.g. wear, corrosion protection or electrical conductivity
- Often a 2-step process involving the deposition of the film followed by a heat treatment
- Lasers represent a versatile alternative to conventional heat treatment: processing of thermally sensitive substrates, defined local treatment of a component
- In many fields of application requires long processing times and not adapted for complex 3D components yet

Laser processes All processes

A laser scanner is used for a fast (v>10 m/s) beam deflection in 2D/3D

For almost every application a circular shaped beam profile is used

Optical elements Piezoelectric deformable mirrors (PDM)

The shape of continuous faceplate is deformed by piezoceramic (PZT) actuators working on transverse piezoeffect

Optical elements Piezoelectric deformable mirrors (PDM)

- Low cost actuators
- Free edge
- Can be coated with all available coatings (up to 1 kW load)
- Response: 1.5 kHz
- Correction range (8 um per actuator)
 - 19 to 109 actuators
- 30 and 50 mm apertures

Optical elements Diffractive optical element (DOE)

1. Using diffraction and interference phenomenons Holoor designs a special pattern for a desired result

Image by Lookang (Wikipedia)

2. The special pattern is applied over a substrate to create the DOE using a lithography process(es)

Optical elements Diffractive optical element (DOE)

AGENDA

- **1** Motivation & goal of the ultraSURFACE project
- **2** Project relevant technologies
- **3** Concept & approach
- 4 First results
- 5 General information about the beneficiary & role in the project

Concept & approach

Increasing throughput

Troughput:

$$TP = \left(t_{npt} + \frac{A}{v \cdot dy \cdot n_{\text{Laser}}}\right)^{-1}$$

t _{npt}	non-prod. Time	\downarrow
A	Area	
v	Velocity	\uparrow
dy	Track offset	\uparrow
n _{Laser}	# Laser	\uparrow

Concept & approach Multi-beam, beam-shaping

Concept & approach

Adaptive beam-shaping for 2D/3D processing

Concept & approach

Adaptive multi-beam positioning for 2D/3D processing

Concept & approach S.M.A.R.T. objectives

»Ultra Dynamic Optical Systems for High Throughput Laser Surface Processing«

- SO1 Dynamic and flexible beam-shaping optics for laser surface processing
- SO2 Multi-beam optics for parallel laser surface processing
- SO3 Ultrafast synchronisation of optics and machine for 3D processing
- **SO4 Validation in industrial scenarios**

AGENDA

- **1** Motivation & goal of the ultraSURFACE project
- **2** Project relevant technologies
- **3** Concept & approach
- 4 First results
- **5** General information about the beneficiary & role in the project

Beam-Shaping Optics (SO1) - Concept

Analytical model for deformable mirror (PDM) shape

- PDM surface shape is calculated based on actuator voltages and integrated into optical design software
- evaluation of beam-shaping capabilities of state-of-the-art PDMs
- results for 79 channel piezo-electric DM (
 § 50 mm):

additional (static) beam-shaping element required

Beam-Shaping Optics (SO1) - Concept

Adapted concept:

- beam is pre-shaped with a rotatable diffractive optical element (DOE)
- PDM compensates for scanner and 3D-surface related distortions

Beam-Shaping Optics (SO1) - Realization

Beam-Shaping Optics (SO1) - Realization

Multi-Beam Optics (SO2) - Concept

- DOE (diffractive optical element) splits initial beam into separate beams
- 1st relay lens focuses light into intermediate focus
- 2nd relay lens images DOE into scanner
- Spot position control unit for individual beam positioning

Multi-Beam Optics (SO2) - Spot Position Control Unit

Independent x-, y- and z-positioning of each beam

- z: miniaturized focus shifter for each beam (+/- 3.5 mm)
- x + y: 2 rotatable plane-parallel glass plates per beam (+/- 400 µm)
- Compensation of:
 - Local surface tilt (>10°)
 - Distortion of spot array for large scan angles

Multi-Beam Optics (SO2) - Spot Position Control Unit

Multi-Beam Optics (SO2) - Realization

Machine Tool (SO3) - Concept

- Mechanical engineering
 - 5 numerical axis
 - granite base
 - measurement probe integrated
- Utilities (electrical, pneumatics, safety, ...
 - protective atmosphere
 - suitable laser safety housing

Machine Tool (SO3) - Realization

AGENDA

- **1** Motivation & goal of the ultraSURFACE project
- **2** Project relevant technologies
- **3** Concept & approach
- 4 First results
- **5** General information about the beneficiary & role in the project

Consortium

Contacts & role in the project

FHG-ILT: project coordination, process development for laser polishing, laser thin film processing and laser micro structuring

- Project coordination: Dr. Edgar Willenborg edgar.willenborg@ilt.fraunhofer.de, phone: +49 241 8906213
- Laser polishing: Judith Kumstel judith.kumstel@ilt.fraunhofer.de, phone: +49 241 89068026
- Laser thin film processing: Hendrik Sändker <u>hendrik.saendker@ilt.fraunhofer.de</u>, phone: +49 241 8906361
- Laser structuring: Dr. Johannes Finger johannes.finger@ilt.fraunhofer.de, phone: +49 241 8906472

Contacts & role in the project

 RWTH-TOS: Development of beam-shaping and multi-beam optics Oskar Hofmann,

oskar.hofmann@tos.rwth-aachen.de, phone: +49 2418906395

UNITECH: Development and construction of the machine Ivan Calderon, <u>ivan.calderon@unitechnologies.com</u>, phone: +41 32 338 85 57

PULSAR: Optics assembly and characterization
 Dr. Stephan Eifel
 <u>eifel@pulsar-photonics.de</u>, phone: +49 24075555521

NEWSON: Development of scanner systems Kathrin Delay <u>info@newson.be</u>, phone: +32 52 22 64 68

Contacts & role in the project

 OKO: Development of deformable mirrors Seva Patlan <u>seva@okotech.com</u>, phone: +31702629420

 HOLO-OR: Development of DOEs Natan Kaplan <u>natan@holoor.co.il</u>, +97289409687

Procter&Gamble P&G: End user Klaus Eimann <u>eimann.k@pg.com</u>, +49 9391284502

SCHAEFFLER: End user

Joachim Weber weberjch@schaeffler.com, +49 9132 82 88831

GEMÜ: End user

Andreas Schönpflug

andreas.schoenpflug@gemue.de, +497940123503

